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We argue that the classical theory of electromagnetism is based on Maxwell’s macroscopic equations, an
energy postulate, a momentum postulate, and a generalized form of the Lorentz law of force. These seven
postulates constitute the foundation of a complete and consistent theory, thus eliminating the need for actual
�i.e., physical� models of polarization P and magnetization M, these being the distinguishing features of
Maxwell’s macroscopic equations. In the proposed formulation, P�r , t� and M�r , t� are arbitrary functions of
space and time, their physical properties being embedded in the seven postulates of the theory. The postulates
are self-consistent, comply with the requirements of the special theory of relativity, and satisfy the laws of
conservation of energy, linear momentum, and angular momentum. One advantage of the proposed formulation
is that it sidesteps the long-standing Abraham-Minkowski controversy surrounding the electromagnetic mo-
mentum inside a material medium by simply “assigning” the Abraham momentum density E�r , t�
�H�r , t� /c2 to the electromagnetic field. This well-defined momentum is thus taken to be universal as it does
not depend on whether the field is propagating or evanescent, and whether or not the host medium is homo-
geneous, transparent, isotropic, dispersive, magnetic, linear, etc. In other words, the local and instantaneous
momentum density is uniquely and unambiguously specified at each and every point of the material system in
terms of the E and H fields residing at that point. Any variation with time of the total electromagnetic
momentum of a closed system results in a force exerted on the material media within the system in accordance
with the generalized Lorentz law.
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I. INTRODUCTION

Maxwell’s macroscopic equations are mathematically pre-
cise, self-consistent, and fully compatible with the special
theory of relativity; however, they require additional postu-
lates to make them complete as well as consistent with the
laws of conservation of energy, momentum, and angular mo-
mentum. In addition to the densities of free charge and free
current, �free and Jfree, which are the sources of E and H
fields in the microscopic equations, Maxwell’s macroscopic
equations incorporate the polarization density P and the
magnetization density M as additional sources of the electro-
magnetic field �1,2�. We emphasize in this paper that there is
no need for explicit physical models or interpretations of
P�r , t� and M�r , t�; rather, these should be treated as well-
behaved functions of space and time that obey certain restric-
tions imposed upon them by special relativity and by the
enunciated postulates of the theory of electromagnetism. In
this view of the classical theory, it is the macroscopic Max-
well equations that are fundamental, reducing to the simpler
microscopic equations when P and M vanish. Our discus-
sions of electromagnetic energy, momentum, force, and
torque in the following sections hint at the strong possibility
that the properties of P and M may not, after all, be deduc-
ible from those of bound charges and currents �as is done in
conventional treatments by invoking standard models of di-
electric polarization and magnetization�. Thus the claim that
Maxwell’s macroscopic equations, being broader in scope,
are also more fundamental than his microscopic equations
may not, in our view, be a matter of convenience but, rather,
a deep-rooted statement concerning the physics of electro-
magnetism.

As is well-known, the macroscopic equations in conjunc-
tion with the definitions D=�oE+P and B=�oH+M relate
the four fields E ,D ,H ,B to their sources �free, Jfree, P, and
M �3,4�; here �o and �o are the permittivity and permeability
of free space. The system of units used throughout the paper
is MKSA.

In the absence of specific models or assumptions regard-
ing the physical nature of P and M, it becomes necessary to
postulate the relation between the fields and their energy
content. It turns out that the only required postulate of the
theory concerning energy is the statement relating the time
rate of change of energy density to the local fields and their
time derivatives; see Eq. �11�. With this postulate in hand, it
is readily shown in the most general case that the rate of flow
of electromagnetic energy �per unit area per unit time� is the
Poynting vector S�r , t�=E�r , t��H�r , t�. The energy postu-
late, in conjunction with Maxwell’s macroscopic equations,
is fully consistent with the law of conservation of energy. It
can be shown that any energy entering a closed volume is
either stored in the fields or consumed in the interaction be-
tween the fields and the sources located within the volume.
Similarly, any energy exiting a closed volume is either re-
leased from the fields or generated as a result of interactions
between the fields and the sources internal to the volume.

The momentum density pEM�r , t� of the electromagnetic
field is another fundamental entity that needs explicit postu-
lation. While there exist physical arguments for deriving
from first principles the momentum of a propagating field in
vacuum �2�, there remains a long-running controversy as to
the nature of the field’s momentum inside material media—
the well-known Abraham-Minkowski controversy �5–7�. We
believe that under general circumstances the field’s momen-
tum cannot be derived from first principles, especially in the
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absence of physical models that pin down the essence of P
and M. It thus becomes necessary to resort to postulating the
field’s momentum density; our postulated expression is
pEM�r , t�=S�r , t� /c2; see Eqs. �13a� and �13b�. This expres-
sion, known to be valid for propagating waves in free space,
also appears to hold for static fields �2�, for evanescent fields,
and for fields within media generally specified in terms of
�free, Jfree, P, and M, whether or not these host media are
transparent, partially absorptive, dispersive, birefringent,
magnetic, nonlinear, etc. �8–19�. In other words, the momen-
tum density of the electromagnetic field under all circum-
stances is simply the local Poynting vector normalized by the
square of the speed of light in vacuum.

So long as an electromagnetic field distribution remains
entirely in free space �or entirely within a homogeneous
transparent medium�, its total momentum remains constant.
However, once the field encounters a change in the environ-
ment, or begins to be scattered and/or absorbed, its momen-
tum begins to vary with time. As an example, consider a
finite-length finite-diameter pulse of light propagating in free
space. The shape of the pulse will change as it propagates,
but its total momentum �i.e., integrated momentum density�
remains constant in time. Now, if the pulse arrives at a mas-
sive, perfectly reflecting, flat mirror, say, at normal inci-
dence, it will be reflected without any loss of energy. At first,
there will be some overlap between the incident and reflected
beams, but eventually the propagation direction of the inci-
dent pulse will be fully reversed. While the pulse interacts
with the mirror, its electromagnetic momentum varies with
time, eventually settling at the opposite of its initial value.
This change of momentum is accompanied by a temporary
force exerted on the mirror, resulting in the transfer of twice
the field’s initial momentum to the mirror �in the form of
mechanical momentum�; the momentum transfer is thus me-
diated by the exerted force. In order for the momentum of
the entire system to be conserved, it is essential that the
instantaneous force experienced by the mirror be precisely
equal to the time rate of change of the field’s momentum at
each instant of time.

The above example may be generalized by replacing the
mirror with an arbitrary medium �not necessarily a reflector�,
whose electromagnetic properties are completely specified in
terms of �free, Jfree, P, and M. Once again, under any and all
circumstances, the force of the electromagnetic field on the
material medium must be exactly equal to the time rate of
change of the field’s total momentum, lest the momentum
conservation law be violated. �Similarly, the torque exerted
by the electromagnetic field on the medium must be identical
with the time rate of change of the field’s total angular mo-
mentum, or else conservation of angular momentum will be
in jeopardy.� Clearly, the postulate expressing the field’s mo-
mentum in terms of its Poynting vector is not arbitrary;
rather, within the region occupied by the field, an intimate
connection must exist between the field’s momentum and the
electromagnetic force exerted on the material medium
�18,19�.

The stage is now set for introducing the last postulate of
the classical theory of electromagnetism. Historically, this
last postulate has been called the Lorentz law of force and
expressed in the form of F=q�E+V�B�, where a point

charge q moving with velocity V experiences the force F
from the local E and B fields �1–3�. While this expression
can be readily written in terms of the free charge and current
densities ��free ,Jfree�, its extension to cover media that con-
tain P and M is problematic. Traditionally, models have been
devised in the form of dense aggregates of atomic electric
dipoles �for P�, and dense aggregates of infinitesimal electric
current loops �for M�—the so-called Amperian model. Sub-
sequently, the force law has been extended to media that
exhibit polarization P and/or magnetization M �3,20–24�.
These models are highly complex, require heroic efforts to
account for self-interactions, and tend to ignore the quantum
nature of atomic polarization and magnetization. We believe
a better approach to the force law is simply to postulate a
generalization of the Lorentz expression that explicitly in-
cludes the contributions of �free, Jfree, P, and M. Such a gen-
eralization, of course, cannot be made arbitrarily; it must
conform with the conservation laws, with the special theory
of relativity, and with the aforesaid postulates concerning the
densities of electromagnetic energy and momentum. As it
turns out, there exist not one but �as far as we know� two
possible formulations of the generalized force law that sat-
isfy the above requirements �3,16�. One such expression for
force density �along with its companion for torque density� is
given by Eqs. �14�, the other by Eqs. �15�. It can be shown
that the total force �and total torque� on a given object in the
presence of an electromagnetic field is the same, no matter
which expression is used �3,25–28�. However, the distribu-
tion of force �and torque� throughout the body of the object
will be different for the two expressions.

In the following sections we present a brief summary of
the seven postulates that form the foundations of the classical
theory of electromagnetism. In addition to the four macro-
scopic equations of Maxwell, Eqs. �1�, these include an ex-
pression for the time rate of change of energy density, Eq.
�11�, the postulate of electromagnetic momentum density,
Eqs. �13a� and �13b�, and the generalized Lorentz law in the
form of Eqs. �14� or Eqs. �15�. No assumptions will be nec-
essary to ascertain the nature of P and M beyond the con-
ventional definitions, Eqs. �2�, and the Lorentz rules for
transforming P and M between inertial frames, Eqs. �6�. The
conditions under which electromagnetic momentum and en-
ergy constitute a relativistic four vector are explored in Sec.
XI. Finally, in Sec. XII we present the results of numerical
simulations that illustrate the intimate connection between
the time rate of change of electromagnetic momentum in a
closed system and the total force exerted on the material
media within that system.

II. MAXWELL’S MACROSCOPIC EQUATIONS

In the MKSA system of units, Maxwell’s macroscopic
equations are

� · D = �free, �1a�

� � H = Jfree + �D/�t , �1b�

� � E = − �B/�t , �1c�
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� · B = 0. �1d�

In these equations, electric displacement D and magnetic in-
duction B are related to the polarization density P and mag-
netization density M via the identities

D = �oE + P , �2a�

B = �oH + M . �2b�

In general, �free, Jfree, P, M, E, H, D, and B appearing in
the above equations are functions of space and time �r , t�
specified in an inertial frame of reference. The free charge
and current densities, of course, satisfy the continuity equa-
tion, � ·Jfree+��free /�t=0, and together they form a four vec-
tor �Jfree ,c�free� that transforms between inertial frames in
accordance with the Lorentz transformation rules of special
relativity �1–3�.

Note that Eqs. �2� are neither new assumptions nor inde-
pendent postulates; they simply define the D and B fields,
which made their first appearance in Eqs. �1�. A good way to
approach Maxwell’s equations then is to recognize that,
while the so-called microscopic theory limits the sources of
the E ,D ,H, B fields to �free and Jfree, the macroscopic theory
is enormously enriched by the addition of P and M as two
essentially independent sources of the electromagnetic field.

III. BOUND ELECTRIC CHARGE DENSITY
AND CURRENT DENSITY ARISING FROM P AND M

One can define bound electric charge and current densi-
ties, �ebound

=−� ·P�r , t� and Jebound
=�P�r , t� /�t, arising from

the polarization P, as well as an effective electric current
density Jemag

=�o
−1� �M, that gives rise to the magnetiza-

tion M. Subsequently, the macroscopic equations �1� may be
written in the following equivalent way:

�o � · E = �free + �ebound
, �3a�

� � B = �o�Jfree + Jebound
+ Jemag

� + �o�o�E/�t , �3b�

� � E = − �B/�t , �3c�

� · B = 0. �3d�

It is now possible to obtain �in the Lorentz gauge� the scalar
and vector potentials ��r , t� and A�r , t� as integrals over the
total charge and current densities, ��r , t�=�free+�ebound

and
J�r , t�=Jfree+Jebound

+Jemag
, that is,

��r,t� = �4��o�−1� � � ���r�,t − �r − r��/c�/�r − r���dv�,

�4a�

A�r,t� = ��o/4�� � � � �J�r�,t − �r − r��/c�/�r − r���dv�.

�4b�

The Lorentz gauge, of course, is the identity relating the
scalar and vector potentials, namely,

� · A�r,t� + �1/c2����r,t�/�t = 0. �4c�

Once the potentials are found, the E and B fields may be
determined as follows:

E�r,t� = − ���r,t� − �A�r,t�/�t , �5a�

B�r,t� = � � A�r,t� . �5b�

The four potential �Ax ,Ay ,Az ,� /c�, specified in the Lorentz
gauge via Eqs. �4a�–�4c�, may be transformed from one in-
ertial frame to another in accordance with the Lorentz trans-
formation rules of special relativity �1,2�. A straightforward
method of transforming the E and B fields between inertial
frames consists of first transforming the four potential, fol-
lowed by deriving the fields from the transformed potentials
using Eqs. �5�.

IV. LORENTZ TRANSFORMATION OF P AND M
BETWEEN INERTIAL FRAMES

It is important to recognize that the bound charges and
currents that appear in Eqs. �3� must form the four vector
�Jebound

+Jemag
,c�ebound

� that obeys not only the continuity
equation but also the Lorentz transformation rules. That the
continuity equation is satisfied is readily demonstrated from
the definitions of Jebound

, Jemag
, and �ebound

. The latter con-
straint, however, dictates the following rules for transforming
P�r , t� and M�r , t� in one inertial frame to P��r� , t�� and
M��r� , t�� in another:

Px� = Px; Py� = ��Py − �oVMz�; Pz� = ��Pz + �oVMy� ,

�6a�

Mx� = Mx; My� = ��My + �oVPz�; Mz� = ��Mz − �oVPy� .

�6b�

Here the inertial frame specified by �r , t� moves at a constant
velocity V along the x axis relative to the frame specified by
�r� , t��. As usual, �=1 /	1− �V /c�2, and the space-time coor-
dinates are transformed as follows:

x� = ��x + Vt�; y� = y ; z� = z; t� = ��t + Vx/c2� . �7�

We emphasize once again that, in arriving at the relativistic
transformation rules of Eqs. �6�, the physical mechanisms
responsible for P and M were not taken into consideration.
Simply stated, the above restrictions are imposed on P�r , t�
and M�r , t� by requiring the relativistic invariance of Max-
well’s macroscopic equations.

V. BOUND MAGNETIC CHARGE AND CURRENT
DENSITIES ARISING FROM P AND M

Maxwell’s equations �1� may also be written in terms
of bound magnetic charge and current densities, �mbound
=−� ·M�r , t� and Jmbound

=�M�r , t� /�t, as well as an effective
magnetic current density Jmpol

=−�o
−1� �P that may be said

to give rise to polarization P. The sources in this case are
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�free, Jfree, �mbound
, and Jmbound

+Jmpol
, while the fields are D

and H, as follows:

� · D = �free, �8a�

� � H = Jfree + �D/�t , �8b�

� � D = − �o�Jmbound
+ Jmpol

� − �o�o�H/�t , �8c�

�o � · H = �mbound
. �8d�

In addition to �free and Jfree, the sources are now specified in
the form of magnetic charge and current densities, from
which D�r , t� and H�r , t� can be readily determined. The
disadvantage of Eqs. �8� over Eqs. �3� is that, because
� ·H�0, a vector potential for the H field can no longer be
defined. However, if the fields produced by �free and Jfree are
treated separately, it will become possible to solve Eqs. �8�
for D and H in terms of the magnetic charge and current
densities. This is done, in analogy with Eqs. �4a�–�4c�, by
taking advantage of the fact that � ·D=0, then introducing
scalar and vector potentials produced by �mbound

and �Jmbound
+Jmpol

�, respectively.
It is important to recognize that �Jmbound

+Jmpol
,c�mbound

� is
a four vector that obeys the continuity equation as well as the
Lorentz transformation rules. The continuity equation is
guaranteed by taking the divergence of Eq. �8c�, then substi-
tuting for � ·H from Eq. �8d�. Compliance with the Lorentz
transformation rules is assured in light of the transformation
relations given by Eqs. �6�.

VI. THE NATURE OF P AND M APPEARING
IN MAXWELL’S MACROSCOPIC EQUATIONS

The arguments advanced in the preceding sections require
no specific knowledge of the physical mechanisms that give
rise to P and M. All one needs to know is that P�r , t� and
M�r , t� are sufficiently well-behaved functions of space and
time whose spatial and temporal derivatives may be used to
define the effective charge and current densities �bound,Jbound,
etc. Even the presence of finite discontinuities in these func-
tions �e.g., at media boundaries� does not pose serious math-
ematical obstacles as the discontinuities can be handled
through the use of Dirac’s 	 function. The sole physical con-
straint on P and M is that they must abide by the transfor-
mation rules of Eqs. �6�.

In general, the time dependence of the functions
�free ,Jfree ,P ,M ,E ,H ,D ,B can be Fourier transformed into
the frequency domain; for example, the Fourier transform
E�r ,
� of E�r , t� is given by

E�r,
� = �
−�

�

E�r,t�exp�− i
t�dt . �9�

In many situations arising in practice, the polarization and
magnetization densities P�r ,
� and M�r ,
� are simply pro-
portional to the local fields E�r ,
� and H�r ,
�, respectively.
The proportionality constants are then denoted by �o�e�
�
and �o�m�
�, and the frequency domain D and B fields are
written

D�r,
� = �o�1 + �e�E = �o��
�E�r,
� , �10a�

B�r,
� = �o�1 + �m�H = �o��
�H�r,
� . �10b�

Homogeneous, linear, isotropic media are thus fully specified
by their permittivity ��
�=��+i�� and permeability ��
�
=��+i��. Any loss of energy in such media will be associ-
ated with �� and ��, which, by convention, are 0. The real
parts of ��
� and ��
�, however, may be positive or nega-
tive; in particular, in the case of negative index media, ��
�0 and ���0.

In spite of the simplifications afforded by restricting Max-
well’s equations to linear media, in what follows we shall
avoid such restrictions, thus maintaining the generality of
P�r , t� and M�r , t� as arbitrary functions of space and time,
which, nevertheless, abide by the relativistic transformation
rules of Eqs. �6�. The following discussions concerning en-
ergy, momentum, force, and torque are therefore quite gen-
eral and do not depend on any assumptions with regard to
homogeneity, isotropy, or linearity as expressed, for ex-
ample, by Eqs. �10�. The functions P�r , t� and M�r , t� could
thus depend on E�r , t� and H�r , t� in complicated, nonlocal,
nonlinear ways, or they may not depend on the fields at all.

VII. ENERGY OF THE ELECTROMAGNETIC FIELD

The field’s energy density Efield�r , t� will vary with time
when the local E field acts upon the free current density Jfree,
or when the local D field undergoes a change in the presence
of E�r , t�, or when the local B field varies in the presence of
H�r , t�. The complete expression for the time rate of change
of the local energy density of the field is

�Efield�r,t�
�t

= E · Jfree + E · �D/�t + H · �B/�t . �11�

The similarity of the symbols used to denote the electric field
E�r , t�, its Fourier transform E�r ,
�, and the energy density
Efield�r , t�, a scalar function of r and t, will hopefully not
cause confusion. Moreover, it should be emphasized that Eq.
�11� does not imply that the local instantaneous energy den-
sity Efield�r , t� is dependent solely on the local and instanta-
neous values of the fields, E�r , t� and H�r , t�, and the
sources, Jfree�r , t�, P�r , t� and M�r , t�. Since Eq. �11� speci-
fies only the time rate of change of Efield�r , t�, the energy
density itself may depend on the history of the local fields.
Also, since P�r , t� and M�r , t� could, in principle, depend on
the E and H fields elsewhere in time and space, the energy
density’s dependence on the fields may or may not be local.

Note that, as far as energy density is concerned, the bound
electric current Jebound

=�P�r , t� /�t behaves similarly to Jfree

in response to E�r , t�, whereas Jemag
=�o

−1� �M does not
enter the above expression at all. What shows up in the en-
ergy density expression is Jmbound

=�M�r , t� /�t; however, this
“magnetic current” interacts with the H field rather than with
the E field. In any event, so long as Eq. �11� is accepted as a
postulate of the classical theory of electromagnetism, there is
no need to speculate about the meaning of its various terms.
The sole justification for the energy postulate of Eq. �11� is
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that its predictions and consequences remain consistent with
the law of conservation of energy as well as with experimen-
tal findings.

Depending on the sign of E ·Jfree in Eq. �11�, the free
current’s contribution to �Efield /�t could be positive or nega-
tive. In other words, Jfree absorbs energy from the field when
the local E-field’s projection on Jfree is positive, whereas the
energy flows in the reverse direction—from the current to the
field—when the projection of E on Jfree is negative. The
local instantaneous energy density stored in E and H fields is
seen from Eq. �11� to be 1

2�o�E�2+ 1
2�o�H�2; this energy may

rise or fall with time, but is never converted directly to heat,
mechanical work, etc. �We mention in passing that, to our
best knowledge, the vacuum energy density of time-
dependent E and H fields, namely, Efield�r , t�= 1

2�o�E�r , t��2

+ 1
2�o�H�r , t��2, has never been derived from first principles;

as such, even in standard treatments of the classical theory,
this part of Eq. �11� must be taken as an independent postu-
late rather than a consequence of Maxwell’s equations.�

Another contribution to the right-hand side of Eq. �11�
comes from E ·�P /�t; when positive, this term expresses the
rate at which energy is stored in the polarization P; when
negative, it represents the rate of return of energy from P to
the field. In general, P�r , t� can serve either as a lossless or a
lossy reservoir of energy, or even as a source of energy �e.g.,
in gain media�. The remaining term on the right-hand side of
Eq. �11�, H ·�M /�t, behaves similarly to E ·�P /�t, with the
obvious difference that the exchange of energy between the
fields and the magnetization M is mediated by the H field
rather than the E field.

One may now proceed to dot multiply Maxwell’s second
and third equations, Eqs. �1b� and �1c�, with E�r , t� and
−H�r , t�, respectively, then add the resulting equations and
invoke Eq. �11� to arrive at Poynting’s theorem, namely,

� · S�r,t� = � · �E�r,t� � H�r,t�� = − �Efield�r,t�/�t .

�12�

Although Eq. �12� does not identify a unique Poynting
vector—in the sense that any divergence-free vector field
could be added to E�r , t��H�r , t� without modifying the
content of the equation—we believe, along with Feynman
�2�, that the simplest choice, namely, S�r , t�=E�r , t�
�H�r , t�, yields the most physically meaningful expression
for the rate of flow of energy per unit area per unit time. In
fact, to avoid such ambiguities, it is perhaps preferable to
replace the energy postulate of Eq. �11� with the following,
slightly more general, postulate: The rate of flow of energy
per unit area per unit time is the Poynting vector S�r , t�
=E�r , t��H�r , t�. A direct consequence of this postulate �in
conjunction with Maxwell’s macroscopic equations� will
then be the expression of the time rate of change of energy
density given by Eq. �11�.

VIII. LINEAR AND ANGULAR MOMENTA
OF THE ELECTROMAGNETIC FIELD

Another tenet of the classical theory that needs specific
enunciation is the expression of electromagnetic momentum

density pEM�r , t� in terms of the Poynting vector S�r , t�.
There exist several thought experiments, collectively referred
to as “Einstein box” experiments, that relate the electromag-
netic field’s momentum density to the Poynting vector
�2,16�. These arguments are not sufficiently general and,
moreover, involve certain assumptions that lie outside the
domain of classical theory; as such, it is preferable to treat
electromagnetic momentum via a postulate that applies not
only in vacuum but also in the presence of �free and Jfree, and
in material media that possess electric and/or magnetic po-
larization, P and M. The general expression for the density
of electromagnetic momentum �also known as the Abraham
momentum �5–7�� is

pEM�r,t� = S�r,t�/c2. �13a�

The corresponding formula for the electromagnetic angular
momentum density LEM�r , t� is

LEM�r,t� = r � pEM�r,t� = r � S�r,t�/c2. �13b�

The above expressions apply not only to propagating fields
in vacuum, but also to static fields and evanescent fields, as
well as fields within media that contain charge, current, po-
larization, and magnetization, whether or not these media are
homogeneous, transparent, isotropic, linear, etc. Moreover,
the expression of the angular momentum density in Eq. �13b�
applies to both spin and orbital angular momenta; in other
words, the formula is valid irrespective of whether the angu-
lar momentum arises from the polarization state of the field,
from its phase and amplitude profile �e.g., field vorticity�, or
from a combination of the two.

When a pulse of light propagates in the free space, its
electromagnetic momentum �linear or angular� remains the
same at all times. However, once the pulse encounters a ma-
terial medium and begins to scatter from or enter into that
medium, the total electromagnetic momentum of the system
�linear or angular� begins to change with time. The time rate
of change of the total linear �angular� electromagnetic mo-
mentum is exactly equal and opposite to the total force
�torque� exerted by the light on the material medium. This is
a general statement of the law of conservation of linear �an-
gular� momentum. Verifying the above statement, however,
requires a knowledge of the force �torque� exerted by the
electromagnetic field on material media; this is the subject of
the following section.

IX. FORCE AND TORQUE EXERTED
BY THE ELECTROMAGNETIC FIELD

ON MATERIAL MEDIA

To complete the foundational postulates of the classical
theory of electromagnetism, it remains to express the force
and torque densities exerted by the electromagnetic field on
material media. This we do in the case of media defined by
their �free�r , t�, Jfree�r , t�, P�r , t�, and M�r , t�. The general-
ized expressions of the Lorentz force and torque densities are

F1�r,t� = �freeE + Jfree � �oH + �P · ��E + �M · ��H

+ ��P/�t� � �oH − ��M/�t� � �oE , �14a�
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T1�r,t� = r � F1�r,t� + P�r,t� � E�r,t� + M�r,t� � H�r,t� .

�14b�

Using simple examples that are amenable to exact analy-
sis, we have shown in previous publications �16–19� that
Eqs. �14� lead to a precise balance of linear and angular
momenta when all relevant forces, especially those at the
boundaries, are properly taken into account. Similar or even
identical expressions for force and torque densities have been
derived by others �3,21–24�. Our focus, however, has been
the generalization of the Lorentz law in a way that is consis-
tent with Maxwell’s equations, with the principles of special
relativity, and with the conservation laws, without regard for
the underlying physical mechanisms that give rise to P and
M.

In evaluating the force and torque exerted by the electro-
magnetic field on ponderable media, care must be taken that,
in every instance, the relevant equations are solved self-
consistently. For example, any motion imparted to the me-
dium in consequence of the exertion of electromagnetic force
and torque which would result in a change of the spatiotem-
poral dependence of �free, Jfree, P, and M must be automati-
cally incorporated into the solution of Maxwell’s equations,
solutions that relate the E ,D ,H ,B fields to their sources
�free ,Jfree ,P ,M. Alternatively, if the electromagnetic fields
are computed by assuming the sources �free�r , t�, Jfree�r , t�,
P�r , t�, and M�r , t�, then the resulting force and torque on
these sources, computed in accordance with Eqs. �14�, can-
not be allowed to further modify the sources; in particular,
the exerted electromagnetic force and torque should not re-
sult in additional material motion, acoustic wave generation
and propagation, etc., in a way that would modify the as-
sumed strengths of the sources or their spatiotemporal de-
pendences. This is not to say that mechanical motion and
acoustic wave propagation should be ignored; rather it is
stating the obvious that such motion must be treated self-
consistently.

X. ALTERNATIVE EXPRESSION FOR FORCE
AND TORQUE DENSITIES

There exists an alternative formulation of the generalized
Lorentz law, where bound electric and magnetic charge den-
sities �ebound

=−� ·P and �mbound
=−� ·M directly experience

the force of the E and H fields. The alternative formulas for
the force and torque densities are

F2�r,t� = ��free − � · P�E + �Jfree + �P/�t� � �oH − �� · M�H

− ��M/�t� � �oE , �15a�

T2�r,t� = r � F2�r,t� . �15b�

The equivalence of total force �and total torque� for the
two formulations in Eqs. �14� and �15� is implicit in the
analysis of Hansen and Yaghjian �3�, but was proven explic-
itly �and independently� by Barnett and Loudon �25,26�.
Subsequently, we extended the proof to cover the case of
objects immersed in a liquid �27,28�. As far as the total force
�or total torque� exerted on a given volume of material is

concerned, Eqs. �14� and �15� can be shown to yield identical
results provided that forces at the boundaries are properly
treated in each case in accordance with the corresponding
force equation. The force �torque� distribution throughout the
volume, of course, will depend on which formulation is used,
but when integrated over the volume of interest, the two
distributions always yield identical values for total force �and
total torque�.

Although, mathematically speaking, both formulations of
the generalized Lorentz law given in Eqs. �14� and �15� are
acceptable, when it comes to real-world physical problems
only one formulation should apply in any given situation. It
is conceivable of course that, depending on the physical
mechanisms that underlie P and M, some material media
will exhibit the dipolar behavior embodied in Eqs. �14�,
while others will behave in accordance with the bound-
charge model of Eqs. �15�. Either way, the best approach to
deciding between the two formulations appears to be con-
ducting experiments that would unambiguously determine
the distribution of force and torque throughout the volume of
a material body exposed to electromagnetic radiation.

Looking at the problem from this experimental perspec-
tive, one can argue that Eqs. �14� are superior to Eqs. �15�, as
the former already incorporate the latter. To appreciate this
argument, note that ��free ,Jfree� is one source of electromag-
netic fields, while P�r , t� is another, and M�r , t� is yet a third
source. In real-world physical systems, one generally associ-
ates the behavior of material media with one or more of these
sources. Now, technically speaking, in solids and liquids
none of the charges are free, as they are all bound with the
lattice. However, those electrons that are tightly bound with
their host nuclei can be said to form electric dipoles; the
force exerted on these dipoles by the E field is �P ·��E, as in
Eq. �14a�. On the other hand, electrons that are more or less
free to roam around the lattice �e.g., conduction electrons�
may be said to act as free electrons; for these the force ex-
erted by the E field is −�� ·P�E, as in Eq. �15a�. However,
this last term would be readily present in Eq. �14a� if, by
definition, �free were to contain −� ·P. �It may seem strange
to think of a conduction electron as belonging to a dipole;
however, it is well known that the Lorentz oscillator model
treats conduction electrons very much the same as bound
electrons, except that the spring constant connecting a con-
duction electron to its host atom is set to zero. This, of
course, makes sense for all frequencies except 
=0, where
under a constant E field the electron would drift away from
its host atom.�

One may imagine that, if there are electrons in the lattice
which are neither tightly bound nor entirely free, they will
spend a fraction of their time acting similar to free electrons,
while the remainder of their time is spent in the bound state.
It will then be possible to model these electrons as a mixture
of ��free ,Jfree� and P�r , t�. The task of modeling this type of
material thus involves a determination as to what fraction of
the charges act as free and what fraction as bound, in order to
assign appropriate numerical values to ��free ,Jfree� and
P�r , t�. The beauty of the force and torque expressions in
Eqs. �14� is that they allow for both types of behavior,
whereas Eqs. �15� do not distinguish the essential dipolar
nature of P�r , t� from the free �or loosely bound� character of
��free ,Jfree�.
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The same sort of argument can be made for the force and
torque exerted on M�r , t� in Eqs. �14� and �15�. Of course,
since magnetic monopoles have not been observed in Nature,
we do not have anything equivalent to ��free ,Jfree� in this
case. However, there is no a priori reason to believe that
some fraction of the magnetic “dipoles” in real world will
not behave similar to a pair of loosely bound monopoles, in
which case the force exerted upon them by an applied H field
should be modeled as −�� ·M�H, whereas a tightly bound
magnetic dipole would respond to an applied H field in ac-
cordance with the �M ·��H formulation. Once an experimen-
tal determination has been made as to what fraction of
M�r , t�, if any, behaves as a free magnetic charge density, the
corresponding force density, �mfree

H−Jmfree
��oE, should be

added to Eq. �14a� to account for this behavior.

XI. DOES THE FIELD MOMENTUM-ENERGY
CONSTITUTE A FOUR VECTOR?

In special relativity the momentum and energy of a par-
ticle �or system of particles� form a four vector �p ,E /c�. This
property is also shared by isolated pulses of electromagnetic
radiation traveling in the free space. However, when the elec-
tromagnetic field is “attached” to its source�s�, it is impos-
sible to separate the momentum-energy of the field from that
of the source in order to define a stand-alone momentum-
energy four vector for the field. The following examples
demonstrate this point.

Consider the L�L�d capacitor depicted in Fig. 1�a�, and
assume L�d so that the edge effects can be ignored. In the
xyz frame, where the capacitor is stationary, the uniform
charge densities on the two plates are ��o, the E field is
��o /�o�ŷ, and the H field is zero. The total field energy is
thus 1

2 ��o
2 /�o�L2d, and, with the absence of the H field im-

plying the absence of the Poynting vector S, the field mo-
mentum is zero. The scalar and vector potentials in the xyz
frame in the region between the plates are ��y�=−��o /�o�y
and A�r , t�=0. In the x�y�z� frame, where the capacitor trav-
els with velocity V along the x axis, the potentials are
���y��=−���o /�o�y� and A��y��=−��V /c2���o /�o�y�x̂. The
fields are thus E�=���o /�o�ŷ and H�=��oVẑ, and the total
field energy and momentum are 1

2���o
2 /�o��1+V2 /c2�L2d and

���o
2 /�o��V /c2�L2dx̂, respectively. �In the latter expressions,

the FitzGerald-Lorentz contraction of the moving capacitor
along the x axis has been taken into account.� Clearly the
field energy and momentum in the two frames are not related
through a Lorentz transformation.

The situation in Fig. 1�b� is similar to that depicted in Fig.
1�a�, except that the capacitor is now rotated around the z
axis by 90°. In the xyz frame, the fields as well as their
energy and momentum are the same as before; the scalar
potential in the region between the plates, however, has
become ��x�=−��o /�o�x. In the x�y�z� frame the potentials
are ���x� , t��=−�2��o /�o��x�−Vt�� and A��x� , t��
=−�2�V /c2���o /�o��x�−Vt��x̂. Thus the fields in x�y�z� are
E�= ��o /�o�x̂ and H�=0; the field’s total energy is
1
2���o

2 /�o��1−V2 /c2�L2d while its momentum is zero. �In the
energy expression, the FitzGerald-Lorentz contraction of the
gap between the capacitor plates has been taken into ac-
count.� Once again, in going from one inertial frame to an-
other, the field’s momentum-energy is seen to behave in a
way that is not expected from a four vector.

In the above examples, the departure of the field’s
momentum-energy from four vector behavior must be related
to the hitherto ignored momentum-energy contributions of
the �charged� capacitor plates. If, in the stationary �xyz�
frame, the energy of the material part of the system is de-
noted by EoL2d, then, in the moving �x�y�z�� frame, the total
energy and momentum of the system become ��Eo

+ 1
2�o

2 /�o�L2d and ��Eo+ 1
2�o

2 /�o��V /c2�L2dx̂, respectively.
Comparing these with the field energy and momentum in the
preceding examples, we find that the energy and momentum
of the material part of the moving capacitor must be given by
��Eo�

1
2 ��o

2 /�o��V /c�2�L2d and ��Eo�
1
2 ��o

2 /�o���V /c2�
�L2dx̂, with the minus sign applying to the case depicted in
Fig. 1�a�, and the plus sign to that in Fig. 1�b�. Clearly the
momentum-energy of neither the “material part” nor the
“field part” of the capacitor exhibits four-vector behavior;
only the sum total of these parts behaves in a way that is
consistent with special relativity.

XII. NUMERICAL SIMULATIONS

We present a set of numerical results that serves to illus-
trate some of the statements made regarding electromagnetic
force and momentum in the preceding sections. The se-
quence of finite difference time domain �FDTD� simulation
results depicted in Figs. 2�a�–2�f� shows the propagation of a
short pulse of light in the free space, its interaction with a
transparent prism followed by interaction with a partially
absorbing reflector, and the subsequent passage of the re-
flected pulse through the glass prism. In this two-
dimensional FDTD simulation, the incident light pulse is lin-
early polarized, with its E field in the yz plane. The various
plots represent the magnitude of the component Ey of the
electric field parallel to the y axis.

Figure 2�a� shows a short pulse of light propagating in the
free space along the negative z axis. The pulse first arrives at
a dielectric prism of refractive index n=1.5 whose outline
appears in dashed white lines. A small fraction of the pulse’s
energy bounces off the entrance facet, while the rest enters
the prism. The pulse is then reflected from the left-hand side
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FIG. 1. A capacitor consisting of two L�L plates separated by
a distance d in free space is uniformly charged with a surface
charge density of ��o. The capacitor is stationary in the xyz frame,
and moves with velocity V along the x axis in the x�y�z� frame. The
plates are parallel to the xz plane in �a� and perpendicular to it in
�b�.
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facet, and exits the prism on the right-hand side. Initially,
some of the pulse’s energy goes into an evanescent field, but,
eventually, this field separates itself from the prism and
propagates away. The object outlined in dashed black lines in
Fig. 2 is a homogeneous medium that partially reflects and
partially absorbs the incident light. The Debye dispersion
model used for this partial mirror is �mirror�
�=��+�� / �1
+ i
��, with ��=2.0, ��=20.0, �=4.8437 fs. While a small
fraction of the pulse’s energy is absorbed within the mirror, a
major portion of the light bounces off the mirror’s reflecting
surface, goes back through the dielectric prism, and returns
to the free space in the end. Each frame of Fig. 2 depicts a
12�12 �m2 region within the yz plane. Different frames
represent different instants of time, starting at t=0, when the
pulse begins its journey in the region immediately above the
prism, and ending at t=27.5 fs, when the pulse is substan-
tially broken up via scattering, reflection, absorption, and
diffraction processes. Throughout this propagation-and-
scattering process, we kept track of the total electromagnetic
momentum and total force exerted by the light pulse on the
material objects within the system.

Figure 3 shows the time evolution of total electromagnetic
momentum pEM�t�= �1 /c2�

S�y ,z , t�dydz and total force
F�t�=

F�y ,z , t�dydz exerted by the light pulse on the ma-
terial media in the system of Fig. 2 during the first 25 fs of
the process. The red �dashed-dotted� and blue �dashed–
double-dotted� curves show the evolution of py and pz, re-
spectively, while the black �solid� and green �dashed� curves

are the computed force components, Fy and Fz. The solid
circles superimposed on the Fy�t� and Fz�t� plots represent
time derivatives of −py�t� and −pz�t�, thus confirming the
universal relation F�t�=−dpEM�t� /dt.

It is clear that the time rate of change of total linear mo-

FIG. 2. �Color online� A short pulse of light propagating in free space along the negative z axis arrives at a dielectric prism whose outline
is shown in dashed white lines. The object outlined in dashed black lines is a homogeneous medium that partially reflects and partially
absorbs the incident light. Each frame depicts a 12�12 �m2 region in the yz plane. Different frames represent different instants of time,
starting at t=0, when the pulse begins its journey in the region immediately above the prism, and ending at t=27.5 fs, when the pulse is
substantially broken up via scattering, reflection, absorption, and diffraction processes. In this two-dimensional FDTD simulation, the
incident light pulse is linearly polarized, with its E field in the yz plane. The various plots represent the magnitude of the component Ey of
the E field parallel to the y axis.

FIG. 3. �Color online� Evolution of total electromagnetic mo-
mentum pEM�t� and total force F�t� exerted by the light pulse on the
material media during the process depicted in Fig. 2. The red
�dashed-dotted� and blue �dashed–double-dotted� curves show the
evolution of py and pz; black �solid� and green �dashed� curves
show the computed force components Fy and Fz. The solid circles
superposed on Fy�t� and Fz�t� are time derivatives of −py�t� and
−pz�t�. �=20 nm.
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mentum is exactly equal �and opposite� to the total force
exerted by the light pulse on the material media. This general
equivalence holds at all instants of time and is apparently
valid even though some of the electromagnetic momentum
happens to reside in the free space, in the form of propagat-
ing as well as evanescent waves, while some fraction of the
momentum resides inside transparent as well as absorbing
and dispersive media.

XIII. CONCLUDING REMARKS

In this paper we argued that the macroscopic equations of
Maxwell are a consistent and mathematically precise set of
equations that can be used to analyze general problems in
classical electrodynamics without the need for specific physi-
cal models of polarization density P and magnetization den-
sity M. The standard Maxwell equations, however, must be
augmented with two postulates regarding the energy and mo-
mentum of the field, and also with a generalized form of the
Lorentz force law, in order to provide a complete and con-
sistent set of equations that comply not only with the require-
ments of the special theory of relativity, but also with the
laws of conservation of energy and momentum.

With the aid of the momentum postulate, in particular, we
have argued that the long-standing Abraham-Minkowski
controversy surrounding the momentum of the electromag-
netic field inside material media can be resolved. In general,
interactions between the field and its material environment
result in a change of the total field momentum versus time.
The field may be distributed among different parts of the host
medium, with perhaps some fraction of it residing in the
surrounding free space, in the form of propagating and/or
evanescent waves. The momentum postulate fixes the mo-
mentum density at S�r , t� /c2 at each and every point in the
system where the field exists. The time rate of change of the
total field momentum then yields the total force experienced
by the host medium. In the past, the force of the electromag-
netic field on the host medium has sometimes been wholly or
partially attributed to a “mechanical” momentum accompa-
nying the field momentum �7,8,16�. Such distinctions, how-
ever, are no longer necessary in light of the arguments pre-

sented in this paper. Our conclusions with regard to
momentum may be summarized as follows:

�i� Abraham momentum is the sole electromagnetic mo-
mentum in any system of materials distributed throughout
the free space.

�ii� Force and torque densities may be directly and unam-
biguously computed from the generalized Lorentz law.

�iii� The total instantaneous force �torque� is precisely
equal and opposite to the time rate of change of the total
electromagnetic linear �angular� momentum of the system.

The last assertion is simply a statement of the laws of
conservation of linear and angular momenta.

Finally, although we have been able to demonstrate, either
analytically or numerically, the conservation of energy and
momentum in diverse situations involving linear, dispersive,
and isotropic as well as birefringent media �8–19�, the most
general proof of the statements made in the preceding sec-
tions �when arbitrary polarization and/or magnetization func-
tions are involved� has not yet been attempted. As likely as it
seems, based on our extensive calculations and simulations,
that the postulates will hold under general circumstances, it
will be desirable to verify the conjectures of this paper in
cases that will turn out to be amenable to analytical or nu-
merical investigation. A good example of such cases is the
transmission of light through silica nanofibers, as reported by
She et al. in a recent publication �29�. Although we are en-
couraged by the authors’ claim that their experimental find-
ings confirm the hypothesis that photons within the nanofiber
have the Abraham momentum, we believe it is necessary to
carry out precise numerical calculations in order to properly
account for the electromagnetic momentum both inside and
outside the nanofiber, as well as the Lorentz force exerted by
the light pulse in its entire path through the nanofiber wave-
guide.
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